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Phase behavior of near-critical fluids confined in periodic gels
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Experiments show that the coexistence region of a vapor-liquid system or binary liquid mixture is narrowed
dramatically when the fluid is confined in a dilute porous medium such as a silica aerogel. We propose a simple
model of the gel as a periodic array of cylindrical strands and study the phase behavior of an Ising system
confined in this geometry. Our results suggest that the coexistence region should widen out at lower tempera-
tures and that the narrowness observed near the critical point may be a fluctuation-induced effect.
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PACS numbegs): 64.70.Fx, 64.70.Ja, 64.60.Fr, 68.45.Gd

When near-critical simple liquids or binary liquid mix- ~ When a near-critical fluid is imbedded in our periodic
tures are confined in dilute porous media such as silica gelsnodel porous medium, we find a narrow coexistence region
their phase behavior is altered dramatically. Wong and conear the critical point, in qualitative agreement with the ex-
workers showed that the vapor-liquid coexistence curves oferimental results. At lower temperatures, however, we find
*He [1] and of nitroger{2] are shifted to lower temperatures that the coexistence region widens abruptly. These results
and higher densities and are narrowed by factors of 3—14 ijrovide a challenge to experiments. In addition, they show
silica gels that occupy only a few percent of the total vol-that disorder in the gel structure may be less important to the

ume. Zhuang and Cannell recently found similar results folypseryed behavior than the large internal surface area of the
isobutyric acid—water mixturgsS]. The fact that all three of

" . . el.
these near-critical fluids show the same behavior suggestqs The specific model porous medium that we have studied
some degree of universality in the phenomenon. However, i

is highly surprising that a small amount of impurity in the G a hexagonal array of infinitely long thin cylinders of radius

form of a dilute gel can have such a pronounced effect on thg’ which represent gel sirands, spaped ata d'.s.@i‘a?’?”-
phase diagram. e take advantage of the proximity to a critical point to

In this paper, we propose a simple model that may captur ouch the problem in terms of a Landau-Ginzburg theory for

the observed behavior. Previous theoretical approaches have Ising model. Thus we picture the space in between

concentrated on the effects of disorder in the gel structur&rands as filled with a magnetizatior(r). The main advan-
[4-7]. In contrast, we neglect disorder and instead focus oiage of our model is thamn(r) is spatially periodic and in-
the effects of strong surface-fluid interactions, which prefer-dependent oz, the coordinate along the axial direction of the
entially attract one phase over the other to the surface of thetrands. It is therefore sufficient to solve fox(r) in the

gel strands. A dilute silica gel, with volume fraction betweentwo-dimensional hexagonal unit cell. We adopt the Wigner-
1% and 5%, is a fractal network of thin strands up to someseitz approximation, replacing the hexagonal unit cell by a
crossover lengtft, , typically between 20 and 100 nm, and circular one of the same ar¢al]. Thus the final geometry

is random at larger length scalgdl. We model this structure that we solve is a circular annulus, where the inner radius is
as a periodic system. Thus we neglect the fractal character @he strand radius and the outer radiub is related to the
the structure as well as the disord®i, but we preserve the gjistance between strands by b(&,) = £3Y4 2. In order
characteristic mesh sizg as the lattice spacing of the peri- to ensure continuity of the derivative uh(F), the normal

Qerivative of the magnetization at the boundary of the unit

is correlated into strands of nonzero radaisOnly by ne- o) st be zero. The free energy per length functional to be
glecting disorder and isolating the effects of strong Surfac‘?ninimized is

preferential attraction can we determine how important dis-
order really is. Q[m]=Q(mg) + Q[ m], D
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where Q¢ and (), are, respectively, the surface and bulk

contributions to the free energy. In the following, all energies 0.028 T
are scaled in terms of the thermal enekgy . i

The free energy per lengtfi is a function of the mag- i ]
netizationmg at the surface of the strand it a: i 0

2ma 1o
Qs(ms)=—§T(H1ms+ 2 9Mmg), 2
-0.025

whereH >0, the surface field, favors positive magnetiza-
tion at the strand surface argl the surface enhancement I
parameter, is typically negative to reflect the fact that spinsat  _g g5

the surface have fewer neighbors than those in the ik -0.25 -0.125 0 0.125 0.25

The parameter is an interaction length that we will set <m>

equal to the two-phase correlation length amplitgge de-

fined by the relatiort™ = &, [t| 7, where&™ is the correla- FIG. 1. Mean-field coexistence curve of the periodic model

tion length in the two-phase region of the bulk system anddashed for a 4% volume fraction gel withH,/kgT=2,

t=(T—T.)/T. is the reduced temperature. Finally, the bulk 9/ksT=—1, andu=1. The coexistence curve of the pure system
free energy per length is (solid) is shown for comparison.

b K2
Qb[m]=27rfa dr r[fB(m(r))—Hm(r)Jr )

dmﬂ of the dashed curve in Fig. 1 falls outside the bulk coexist-
dr) |

ence curve, implying that the dense phase of the gel system
3 is more densdhan the dense phase in the bulk.

The mean-field treatment of the periodic model may be
whereH is the uniform magnetic field density and ! is a ina_\dequate because it neglects ﬂu_ctuations._The narrow co-
molecular length related to the interaction range. In the re€Xistence curves observed experimentally in the confined
gime of interest, the uniform fielth is negative, in opposi- VaPor-liquid[1] and binary liquid 3] systems lie well inside
tion to the surface fieldd, [12]. The functionfg(m) is the the critical region of the corresponding pure systems. Thus

free energy density of a uniform system with average mag[nean_—field theory provides a poor approximation to the
netization m. The Landau expansion to fourth order for €duation of state of the pure system in the temperature re-

fo(m) is '

gime of the experiments. To rectify this, we have used a
parametric equation of state, the Schofield-Litster-Ho linear
model[14,17]. This general approach, of using E§) with
a more accurate form for the bulk free energythan Eq.
(4), has been useful to several other problems involving in-
homogeneous composition profiles, such as the vapor-liquid
interfacial tensiorf15], the critical adsorption profile near a
planar surfacé16], and fluid interfacial tensions near a criti-
al end poin{17,18. Note, however, that we have assumed
that the exponeny is zero, while Refs[16—18 have gone
beyond our approximation by allowing to be nonzero.

fg(m)e 3 tm2+ 2 um®. (4

The coefficientu>0 sets the width of the coexistence curve
of the bulk system and is the reduced temperature. Mini-

mization of Eq.(1) yields a second-order, nonlinear differ-

ential equation fom(r) that we solve numerically, using a

relaxation method. We then compute the average magnetiz
tion (m)=2/2dr r m(r)/(b?—a?). The resulting(m) vs

H isotherms are used to construct the coexistence curve. The equation of state of the linear model is described by a

The results of the mean-field analysis are shown in Fig. 1Set of three coupled equations relating the reduced tempera-
where we have plotted the phase diagram in the{ b q 9 P

magnetization-temperature plane. The solid line represen ﬁre L magnet_|zat|onm, a.nd magnetic-field densitH
the coexistence curve of the pure system, while the dashe rough the variables and ¢:

line is the coexistence curve of the system confined in a 4% m(6) =rAW( )

volume fraction periodic gel. Note that the critical point ’
shifts to higher magnetizatiam.>0 due to the surface field.
It also shifts to lower temperatute<<O due to competition
between the surface field;>0 and the bulk magnetic field
H <0, which discourages long-range ordl&8]. This shift of

the critical point is consistent with experimental results, but O ~ ,
there are important differences: the dashed coexistence cury§'€"€ M, k, and| are functions that obey the symmetry

in Fig. 1 is much wider than the experimentally observedProPerties ofm,t andh, respectively. The one-phase region
coexistence curve and, more significantly, the mean-field® described byr>0 and 0<[f|<1. At coexistence,
analysis fails to reproduce an important qualitative feature of = =1. The functional forms chosen by Schofield, Lister,
the experimental coexistence curve. The right edge of th@nd Ho aren=m,6, k=1-b?6% andl=1,6(1— 6°), where
experimental curve falls well inside the bulk coexistencem, andl, are normalization parameters and the parameter
curve, so that the dense phase in the gel systdesisdense b is given byb?=(y—28)/y(1—2p8) [14], wherey is the
than the densdiquid) phase in the bulkl]. The mean-field susceptibility exponent and is the magnetization exponent.
analysis does not capture this surprising result: the right edgéhis choice is exact within the epsilon expansion to order

t(6)=rk(0),

H(8)=rP%(9). (5)
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€, and Fisher and UptofiL7] find the linear model works 0.05
reasonably well in the single-phase region even in three di-
mensions, using modern critical amplitude estimafes. g

The drawback of this linear model is that it is not well 0 -
behaved inside the bulk coexistence region, which is where t i
the new coexistence curve of the gel system lies. In order to

explore behavior in this region, we follow Fisher and Upton -0.05 -
and use polynomially interpolated linear mod¢lkr]. In t
analogy with the one-phase parametric equation of state, we !
use the variable >1, and a new variabl®, |9|<1, to de- 0.1
scribe the two-phase region, with=*=1 at coexistence. -
Similarly, we define .0.15
_ -0.6
m(6)=rPm(9), (a)
t(9)=rk(6),
H(0_)=r35I(—0). ©6) -0.0025 IR
— H/k T ¢
The functionsm,k, and| are chosen to be polymonials in B cr

6. The coefficients of the polynomials are determined by  -0.003 -

matching_to the functionsn, k, and| at the coexistence r

curve = 6= *1, so that the equation of state and its first

two derivatives with respect tm are continuous therl7]. g '

We  choose m=my6, k=-(1-c?6?), and I YT P —

I=lo[6—(1+a5)°+as6°]. We find that c?=2-b? o) t

my=My, lo=—0.3607,, andas= —3.0905. The only other

constraint on the form of the equation of state inside the g 5 (5 Coexistence curvédashedl of the periodic model

two-phase region is the magnitude of the interfacial tensiongg|cylated using the interpolated linear mo¢ete Refs[16,18)

We find that the polynomials chosen above yield an estimatgy a 49 volume fraction gel wittH, /ksT=2 andg/kgT=—1.

of the universal ratidJ; = o(£7)?/kgT.~0.40, whereo is  There are two critical points and a triple pointtat The coexist-

the interfacial tension and" is the correlation length above ence curve of the corresponding pure systawlid) is shown for

T. at H=0. This is consistent with experimental estimatescomparison(b) Phase diagram in thd-t plane showing the forked

Uf:0-39i 0.01[20]. coexistence line. The corresponding coexistence line of the pure
The results of using the interpolated linear model on ousystem lies aH=0 andt=<0.

periodic gel are strikingly different from the mean-field re-

sults of Fig. 1. The phase diagrams in the temperature-

magnetization plane and field-temperature plane are showttoes notprove that there are two critical points; it only

in Fig. 2[21]. There are now two critical points crowning shows that such behavior may be possible when fluctuation

two narrower coexistence curvéa “double hump”) [22]. effects are included.

Below a triple point, marked, in Fig. 2, we recover the The result in Fig. 2 may be qualitatively consistent with

usual wide two-phase coexistence region. The triple point irexperimental findings. Recent data of Chan and co-workers

thet-m diagram corresponds to the point at which two armg24] show that the coexistence region does indeed widen out

branch off in theH-t diagram; the left-hand hump in tlte  at lower temperatures, as we predict. The data in R&f8]

m plane corresponds to the lower arm and the right-handnay represent the top of the higher hump. Note that the

hump corresponds to the upper arm in thda diagram. Fi-  width of each hump is narrower by a factor of roughly 3

nally, although each phase may be represented in terms of@mpared to the width of the bulk curve. This is comparable

single average magnetization as in Fig. 2, the phases are to the narrowing observed for nitrogen in aerogel, but far

actually inhomogeneous, with high positive magnetizationrsmaller than the narrowing observed fdHe in aerogel

near the strands and lower magnetization between strand®,1]. We can reproduce narrower coexistence curves by in-

The magnetization profiles are shown in Fig. 3, for a fixedcluding a longer-ranged surface interact{anising from van

temperature t=—0.068 above the triple point at der Waals interactions, for examplenstead of a contact

t;=—0.0725. Profiles 1 and 2 coexist across the left-handurface interactiofisee Eq.(2)]. When we include this, the

hump and profiles 3 and 4 coexist across the right-hanteft-hand edge of the coexistence region is shifted towards

hump of Fig. 2. This different behavior appears to be in-the right(higher magnetizationwhile the right-hand edge is

duced by fluctuations since it does not appear in mean-fieldearly unaffected. Both humps remain comparable in width,

theory. However, we note that a different parametric modelso each hump becomes narrower by roughly 50%. The frac-

namely, the trigonometric modgl7], which is well-behaved tal nature of the gel may further narrow the coexistence re-

in the two-phase region, produces a single wide coexistenagion since positive magnetization should condense in regions

curve for realistic parameter valug®3]. Thus our analysis dense in strands, shifting the left-hand edge of the coexist-

N S
-0.06 -0.04
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Finally, we note that the appearance of a second critical
point has been observed in two other calculations of near-
critical fluids in porous media. Pitard, Rosinberg and Tarjus
[6] have used liquid state theory to study a near-critical fluid
confined in a disordered porous matrix made of quenched
spheres. Within the mean-spherical approximation, they find
that the coexistence region is narrowed relative to the bulk
and that a second critical point appears at lower tempera-
tures. However, in their case, the heights of the two critical
points are reversed from our result shown in Fig. 2. Their
results are consistent with recent Monte Carlo simulations by
Page and Monsof7] on the same mod¢R6]. Perhaps dis-
order additionally favors the instability of the system to two
critical points and shifts the heights of the critical points
relative to the periodic case.

FIG. 3. Magnetization profiles corresponding to coexisting In summary. we have shown that an Ising svstem confined
phases at a temperatute=—0.07 above the triple point at Y, gsy

t=—0.0735. The inner radiua and outer radiug of the unit cell in a dilute peripdic array of Cy”_ndrical strands can shOW
are shown by arrows. Profiles 1 and 2 coexist across the left humgnexpectedly rich phase behavior that may be consistent
and profiles 3 and 4 coexist across the right hump. The magnetizaVith puzzling experimental results. Although the coexistence
tion is scaled by the magnetizatiom, of the coexisting bulk phases region is extremely narrow near the critical point, our results
and distance is scaled by the correlation lengtf the bulk system. imply that it should widen at lower temperatures. The un-
Thusm(r/€)/me= =1 correspond to the coexisting magnetizations usual behavior that we have predicted is markedly different
of the pure system at the same temperature. from the phase behavior of the pure, unconfined system and
results from the strong surface interaction and the high
surface-area to volume ratio of the porous medium. Both
ence region further to the right. In addition, variations in thesurface and bulk effects contribute to the phase behavior.
local gel density may shift the relative heights of the twoThis is characteristic of true mesoscopic systems such as
critical points since regions less dense in gel will prefer tonear-critical fluids confined between two plates. In such sys-
phase separate at higher temperatures. We note that ot@ms, however, the correlation length for composition fluc-
model does capture the important qualitative feature mentuations in the fluid is limited by the plate spacing. In dilute
tioned earlier: the dense phase of the left-hand hump is lesserogels, the fluid occupies nearly all of the sample volume,
dense than the dense phase of the pure system. so there are no complicating finite-size effects. Thus a near-
Trends in the gel volume fraction are also consistent witheritical fluid in a dilute porous gel is an illuminating example

experimental resultil]. The gel volume fractionpy is var-  of a macroscopig fully three-dimensional system that dis-
ied in our model by changing the ratio of the outer and innefs|ays mesoscopibehavior.

diameters of the unit celb/a. As ¢4 increases, the coexist- _ _ _ _
ence region is suppressed to lower temperatures and the We especially thank Michael Fisher and Shun-Yong Zinn
humps grow narrower and more pronounced. Trends witfior directing us to parametric equations of state, sharing
H, are also sensible. As we decredbg the humps become unpublished results, and aiding us in calculations on
less pronounced and the coexistence region shifts upward the trigonometric model. We are also grateful to David
temperature. Below a threshold value, however, the doubl€annell for suggesting periodic geometries and to Cannell
hump disappears leaving a narrow coexistence curve thand Moses Chan for showing us unpublished
widens out at lower temperatures into a shoulder instead of data. Finally, we thank Douglas Durian, Jon Machta, Joseph
second hump. As we decreast; further, this shoulder Rudnick, Martin-Luc Rosinberg, and Gilles Tarjus for
gradually disappears, and the coexistence curve widens amaistructive discussions. The support of the Petroleum Re-
moves upward to the left to approach the bulk coexistencesearch Fund and Exxon Education Fund is gratefully ac-
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