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Phase behavior of near-critical fluids confined in periodic gels
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Experiments show that the coexistence region of a vapor-liquid system or binary liquid mixture is narrowed
dramatically when the fluid is confined in a dilute porous medium such as a silica aerogel. We propose a simple
model of the gel as a periodic array of cylindrical strands and study the phase behavior of an Ising system
confined in this geometry. Our results suggest that the coexistence region should widen out at lower tempera-
tures and that the narrowness observed near the critical point may be a fluctuation-induced effect.
@S1063-651X~97!01301-9#

PACS number~s!: 64.70.Fx, 64.70.Ja, 64.60.Fr, 68.45.Gd
-
e
co

s
4
ol
fo

e
r,
e
th

tu
ha
tu
o
er
t
en
m
d

r

i-
ac

ac
is

ic
ion
x-
nd
ults
ow
the
f the

ied
us

to
for
en

e

er-
y a

s is

nit
be
When near-critical simple liquids or binary liquid mix
tures are confined in dilute porous media such as silica g
their phase behavior is altered dramatically. Wong and
workers showed that the vapor-liquid coexistence curves
4He @1# and of nitrogen@2# are shifted to lower temperature
and higher densities and are narrowed by factors of 3–1
silica gels that occupy only a few percent of the total v
ume. Zhuang and Cannell recently found similar results
isobutyric acid–water mixtures@3#. The fact that all three of
these near-critical fluids show the same behavior sugg
some degree of universality in the phenomenon. Howeve
is highly surprising that a small amount of impurity in th
form of a dilute gel can have such a pronounced effect on
phase diagram.

In this paper, we propose a simple model that may cap
the observed behavior. Previous theoretical approaches
concentrated on the effects of disorder in the gel struc
@4–7#. In contrast, we neglect disorder and instead focus
the effects of strong surface-fluid interactions, which pref
entially attract one phase over the other to the surface of
gel strands. A dilute silica gel, with volume fraction betwe
1% and 5%, is a fractal network of thin strands up to so
crossover lengthjx , typically between 20 and 100 nm, an
is random at larger length scales@8#. We model this structure
as a periodic system. Thus we neglect the fractal characte
the structure as well as the disorder@9#, but we preserve the
characteristic mesh sizejx as the lattice spacing of the per
odic network and we retain the fact that the internal surf
is correlated into strands of nonzero radiusa. Only by ne-
glecting disorder and isolating the effects of strong surf
preferential attraction can we determine how important d
order really is.
551063-651X/97/55~1!/539~5!/$10.00
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When a near-critical fluid is imbedded in our period
model porous medium, we find a narrow coexistence reg
near the critical point, in qualitative agreement with the e
perimental results. At lower temperatures, however, we fi
that the coexistence region widens abruptly. These res
provide a challenge to experiments. In addition, they sh
that disorder in the gel structure may be less important to
observed behavior than the large internal surface area o
gel.

The specific model porous medium that we have stud
is a hexagonal array of infinitely long thin cylinders of radi
a, which represent gel strands, spaced at a distancejx apart.
We take advantage of the proximity to a critical point
couch the problem in terms of a Landau-Ginzburg theory
the Ising model. Thus we picture the space in betwe
strands as filled with a magnetizationm(rW). The main advan-
tage of our model is thatm(rW) is spatially periodic and in-
dependent ofz, the coordinate along the axial direction of th
strands. It is therefore sufficient to solve form(rW) in the
two-dimensional hexagonal unit cell. We adopt the Wign
Seitz approximation, replacing the hexagonal unit cell b
circular one of the same area@11#. Thus the final geometry
that we solve is a circular annulus, where the inner radiu
the strand radiusa and the outer radiusb is related to the
distance between strandsjx by b(jx)5jx3

1/4/A2p. In order
to ensure continuity of the derivative ofm(rW), the normal
derivative of the magnetization at the boundary of the u
cell must be zero. The free energy per length functional to
minimized is

V@m#5Vs~ms!1Vb@m#, ~1!
539 © 1997 The American Physical Society
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540 55JAMES P. DONLEY AND ANDREA J. LIU
whereVs and Vb are, respectively, the surface and bu
contributions to the free energy. In the following, all energ
are scaled in terms of the thermal energykBT.

The free energy per lengthVs is a function of the mag-
netizationms at the surface of the strand atr5a:

Vs~ms!52
2pa

z2
~H1ms1

1
2 gms

2!, ~2!

whereH1.0, the surface field, favors positive magnetiz
tion at the strand surface andg, the surface enhanceme
parameter, is typically negative to reflect the fact that spin
the surface have fewer neighbors than those in the bulk@12#.
The parameterz is an interaction length that we will se
equal to the two-phase correlation length amplitudej0

2 , de-
fined by the relationj25j0

2utu2n, wherej2 is the correla-
tion length in the two-phase region of the bulk system a
t5(T2Tc)/Tc is the reduced temperature. Finally, the bu
free energy per length is

Vb@m#52pE
a

b

dr r F f B„m~r !…2Hm~r !1
k2

2 S dmdr D
2G ,

~3!

whereH is the uniform magnetic field density andk21 is a
molecular length related to the interaction range. In the
gime of interest, the uniform fieldH is negative, in opposi-
tion to the surface fieldH1 @12#. The functionf B(m) is the
free energy density of a uniform system with average m
netizationm. The Landau expansion to fourth order f
f B(m) is

f B~m!} 1
2 tm

21 1
4 um

4. ~4!

The coefficientu.0 sets the width of the coexistence cur
of the bulk system andt is the reduced temperature. Min
mization of Eq.~1! yields a second-order, nonlinear diffe
ential equation form(r ) that we solve numerically, using
relaxation method. We then compute the average magne
tion ^m&52*a

bdr r m(r )/(b22a2). The resulting^m& vs
H isotherms are used to construct the coexistence curve

The results of the mean-field analysis are shown in Fig
where we have plotted the phase diagram in
magnetization-temperature plane. The solid line repres
the coexistence curve of the pure system, while the das
line is the coexistence curve of the system confined in a
volume fraction periodic gel. Note that the critical poi
shifts to higher magnetizationm̄c.0 due to the surface field
It also shifts to lower temperaturetc,0 due to competition
between the surface fieldH1.0 and the bulk magnetic field
H,0, which discourages long-range order@13#. This shift of
the critical point is consistent with experimental results, b
there are important differences: the dashed coexistence c
in Fig. 1 is much wider than the experimentally observ
coexistence curve and, more significantly, the mean-fi
analysis fails to reproduce an important qualitative feature
the experimental coexistence curve. The right edge of
experimental curve falls well inside the bulk coexisten
curve, so that the dense phase in the gel system isless dense
than the dense~liquid! phase in the bulk@1#. The mean-field
analysis does not capture this surprising result: the right e
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of the dashed curve in Fig. 1 falls outside the bulk coex
ence curve, implying that the dense phase of the gel sys
is more densethan the dense phase in the bulk.

The mean-field treatment of the periodic model may
inadequate because it neglects fluctuations. The narrow
existence curves observed experimentally in the confi
vapor-liquid@1# and binary liquid@3# systems lie well inside
the critical region of the corresponding pure systems. T
mean-field theory provides a poor approximation to t
equation of state of the pure system in the temperature
gime of the experiments. To rectify this, we have used
parametric equation of state, the Schofield-Litster-Ho lin
model @14,17#. This general approach, of using Eq.~3! with
a more accurate form for the bulk free energyf B than Eq.
~4!, has been useful to several other problems involving
homogeneous composition profiles, such as the vapor-liq
interfacial tension@15#, the critical adsorption profile near
planar surface@16#, and fluid interfacial tensions near a crit
cal end point@17,18#. Note, however, that we have assum
that the exponenth is zero, while Refs.@16–18# have gone
beyond our approximation by allowingh to be nonzero.

The equation of state of the linear model is described b
set of three coupled equations relating the reduced temp
ture t, magnetizationm, and magnetic-field densityH
through the variablesr andu:

m~u!5r bm̃~u!,

t~u!5rk̃~u!,

H~u!5r bd l̃ ~u!. ~5!

where m̃, k̃, and l̃ are functions that obey the symmet
properties ofm,t andh, respectively. The one-phase regio
is described by r.0 and 0<uuu,1. At coexistence,
u561. The functional forms chosen by Schofield, Liste
and Ho arem̃5m̃0u, k̃512b2u2, andl̃5 l̃ 0u(12u2), where
m̃0 and l̃ 0 are normalization parameters and the parame
b is given byb25(g22b)/g(122b) @14#, whereg is the
susceptibility exponent andb is the magnetization exponen
This choice is exact within the epsilon expansion to ord

FIG. 1. Mean-field coexistence curve of the periodic mod
~dashed! for a 4% volume fraction gel withH1 /kBT52,
g/kBT521, andu51. The coexistence curve of the pure syste
~solid! is shown for comparison.
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55 541PHASE BEHAVIOR OF NEAR-CRITICAL FLUIDS . . .
e2, and Fisher and Upton@17# find the linear model works
reasonably well in the single-phase region even in three
mensions, using modern critical amplitude estimates@19#.

The drawback of this linear model is that it is not we
behaved inside the bulk coexistence region, which is wh
the new coexistence curve of the gel system lies. In orde
explore behavior in this region, we follow Fisher and Upt
and use polynomially interpolated linear models@17#. In
analogy with the one-phase parametric equation of state
use the variabler.1, and a new variableū, uūu,1, to de-
scribe the two-phase region, withū561 at coexistence
Similarly, we define

m~ ū !5r bm̄~ ū !,

t~ ū !5rk̄~ ū !,

H~ ū !5r bd l̄ ~ ū !. ~6!

The functionsm̄,k̄, and l̄ are chosen to be polymonials i
ū. The coefficients of the polynomials are determined
matching to the functionsm̃, k̃, and l̃ at the coexistence
curve u5 ū561, so that the equation of state and its fi
two derivatives with respect tom are continuous there@17#.
We choose m̄5m̄0ū, k̄52(12c2ū2), and
l̄5 l̄ 0@ ū2(11a5) ū

31a5ū
5#. We find that c2522b2,

m̄05m̃0, l̄ 0520.3607l̃ 0, anda5523.0905. The only other
constraint on the form of the equation of state inside
two-phase region is the magnitude of the interfacial tens
We find that the polynomials chosen above yield an estim
of the universal ratioU1

15s(j1)2/kBTc'0.40, wheres is
the interfacial tension andj1 is the correlation length abov
Tc at H50. This is consistent with experimental estimat
U1

150.3960.01 @20#.
The results of using the interpolated linear model on

periodic gel are strikingly different from the mean-field r
sults of Fig. 1. The phase diagrams in the temperatu
magnetization plane and field-temperature plane are sh
in Fig. 2 @21#. There are now two critical points crownin
two narrower coexistence curves~a ‘‘double hump’’! @22#.
Below a triple point, markedt t in Fig. 2, we recover the
usual wide two-phase coexistence region. The triple poin
the t-m̄ diagram corresponds to the point at which two ar
branch off in theH-t diagram; the left-hand hump in thet-
m̄ plane corresponds to the lower arm and the right-h
hump corresponds to the upper arm in theH-t diagram. Fi-
nally, although each phase may be represented in terms
single average magnetizationm̄ as in Fig. 2, the phases ar
actually inhomogeneous, with high positive magnetizat
near the strands and lower magnetization between stra
The magnetization profiles are shown in Fig. 3, for a fix
temperature t520.068 above the triple point a
t t520.0725. Profiles 1 and 2 coexist across the left-ha
hump and profiles 3 and 4 coexist across the right-h
hump of Fig. 2. This different behavior appears to be
duced by fluctuations since it does not appear in mean-fi
theory. However, we note that a different parametric mod
namely, the trigonometric model@17#, which is well-behaved
in the two-phase region, produces a single wide coexiste
curve for realistic parameter values@23#. Thus our analysis
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does notprove that there are two critical points; it only
shows that such behavior may be possible when fluctua
effects are included.

The result in Fig. 2 may be qualitatively consistent wi
experimental findings. Recent data of Chan and co-work
@24# show that the coexistence region does indeed widen
at lower temperatures, as we predict. The data in Refs.@1,3#
may represent the top of the higher hump. Note that
width of each hump is narrower by a factor of roughly
compared to the width of the bulk curve. This is compara
to the narrowing observed for nitrogen in aerogel, but
smaller than the narrowing observed for3He in aerogel
@2,1#. We can reproduce narrower coexistence curves by
cluding a longer-ranged surface interaction~arising from van
der Waals interactions, for example!, instead of a contac
surface interaction@see Eq.~2!#. When we include this, the
left-hand edge of the coexistence region is shifted towa
the right~higher magnetization!, while the right-hand edge is
nearly unaffected. Both humps remain comparable in wid
so each hump becomes narrower by roughly 50%. The f
tal nature of the gel may further narrow the coexistence
gion since positive magnetization should condense in reg
dense in strands, shifting the left-hand edge of the coex

FIG. 2. ~a! Coexistence curve~dashed! of the periodic model
calculated using the interpolated linear model~see Refs.@16,18#!
for a 4% volume fraction gel withH1 /kBT52 andg/kBT521.
There are two critical points and a triple point att t . The coexist-
ence curve of the corresponding pure system~solid! is shown for
comparison.~b! Phase diagram in theH-t plane showing the forked
coexistence line. The corresponding coexistence line of the p
system lies atH50 andt<0.



he
o
to
t
e
le

it

ne
-
t
i

rd
b
th
of

a
nc

ical
ar-
jus
uid
hed
find
ulk
era-
cal
eir
by

o
ts

ned
w
tent
ce
lts
n-
ent
and
igh
oth
ior.
as

ys-
c-
te
e,
ar-
le
-

nn
ing
on
id
nell
ed
eph
r
Re-
ac-

ng
t

um
tiz
s

ns

542 55JAMES P. DONLEY AND ANDREA J. LIU
ence region further to the right. In addition, variations in t
local gel density may shift the relative heights of the tw
critical points since regions less dense in gel will prefer
phase separate at higher temperatures. We note tha
model does capture the important qualitative feature m
tioned earlier: the dense phase of the left-hand hump is
dense than the dense phase of the pure system.

Trends in the gel volume fraction are also consistent w
experimental results@1#. The gel volume fractionfg is var-
ied in our model by changing the ratio of the outer and in
diameters of the unit cellb/a. As fg increases, the coexist
ence region is suppressed to lower temperatures and
humps grow narrower and more pronounced. Trends w
H1 are also sensible. As we decreaseH1, the humps become
less pronounced and the coexistence region shifts upwa
temperature. Below a threshold value, however, the dou
hump disappears leaving a narrow coexistence curve
widens out at lower temperatures into a shoulder instead
second hump. As we decreaseH1 further, this shoulder
gradually disappears, and the coexistence curve widens
moves upward to the left to approach the bulk coexiste
curve @25#.

FIG. 3. Magnetization profiles corresponding to coexisti
phases at a temperaturet520.07 above the triple point a
t520.0735. The inner radiusa and outer radiusb of the unit cell
are shown by arrows. Profiles 1 and 2 coexist across the left h
and profiles 3 and 4 coexist across the right hump. The magne
tion is scaled by the magnetizationm0 of the coexisting bulk phase
and distance is scaled by the correlation lengthj of the bulk system.
Thusm(r /j)/m0561 correspond to the coexisting magnetizatio
of the pure system at the same temperature.
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Finally, we note that the appearance of a second crit
point has been observed in two other calculations of ne
critical fluids in porous media. Pitard, Rosinberg and Tar
@6# have used liquid state theory to study a near-critical fl
confined in a disordered porous matrix made of quenc
spheres. Within the mean-spherical approximation, they
that the coexistence region is narrowed relative to the b
and that a second critical point appears at lower temp
tures. However, in their case, the heights of the two criti
points are reversed from our result shown in Fig. 2. Th
results are consistent with recent Monte Carlo simulations
Page and Monson@7# on the same model@26#. Perhaps dis-
order additionally favors the instability of the system to tw
critical points and shifts the heights of the critical poin
relative to the periodic case.

In summary, we have shown that an Ising system confi
in a dilute periodic array of cylindrical strands can sho
unexpectedly rich phase behavior that may be consis
with puzzling experimental results. Although the coexisten
region is extremely narrow near the critical point, our resu
imply that it should widen at lower temperatures. The u
usual behavior that we have predicted is markedly differ
from the phase behavior of the pure, unconfined system
results from the strong surface interaction and the h
surface-area to volume ratio of the porous medium. B
surface and bulk effects contribute to the phase behav
This is characteristic of true mesoscopic systems such
near-critical fluids confined between two plates. In such s
tems, however, the correlation length for composition flu
tuations in the fluid is limited by the plate spacing. In dilu
aerogels, the fluid occupies nearly all of the sample volum
so there are no complicating finite-size effects. Thus a ne
critical fluid in a dilute porous gel is an illuminating examp
of a macroscopic, fully three-dimensional system that dis
playsmesoscopicbehavior.
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